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5 
Exception-Flow Analysis for AspectJ Programs   

To discover the exceptions that can flow from an aspect advice can become 

a daunting, if not infeasible, task to be manually performed - especially if we take 

into account the unchecked exceptions available in AspectJ. The exceptions that 

may escape from an advice can come from different sources: (i) they can be 

explicitly thrown by throw statements; (ii) they can also be implicitly thrown by 

operations (e.g., the division by zero throws an instance of 

ArithmeticException, and the access of a null reference throws an instance of 

NullPointerException); (iii) exceptions can be thrown by the JDK 

environment when an abnormal situation occurs (e.g., 

OutOfMemoryException); (iv) there are also AspectJ environment exceptions 

that can be thrown by the additional code included by the AspectJ weaver during 

aspect composition (e.g., NoAspectBoundException); and finally (v) 

exceptions can also be implicitly thrown by a library method call.  

Usually, to know which exceptions may be thrown from a piece of code, the 

developer must rely on documentation that specifies the exceptions (checked and 

unchecked) that a method or advice may throw. However, most of the time, such 

documentation is neither precise nor complete (Sacramento et al., 2006; Cabral 

and Marques, 2007).  This chapter presents SAFE (Static Analysis for the Flow of 

Exceptions), an exception-flow analysis tool that computes the exception flow of 

AspectJ programs. In Sections 5.1 and 5.2 we present the supporting ideas and the 

heuristics adopted in SAFE, and in Section 5.3 we describe its design and 

implementation details.  

 

5.1. 
Supporting Ideas 

The exception-flow analysis resembles the data-flow analysis for finding 

def-use pairs (Myers, 2004); but, instead of using the control flow graphs, it 

traverses the program call graph (see Section 5.1.1). In the exception-flow 
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analysis, the places in which an exception is thrown (e.g., by throw statements) 

and handled (by an enclosing try-catch block) are equivalent to the places 

where a variable is defined and used in def-use analysis algorithms. When an 

exception is signaled it propagates along the dynamic call chain until a proper 

handler is found. If no handler is found, it remains uncaught and reaches the 

program entry point. Therefore, to compute the flow of program’s exceptions, the 

exception-flow analysis algorithm traverses the program call graph backwards 

until a proper handler is found for each exception signaled inside the program. 

Some tools have been proposed so far to calculate the exception flows of 

OO programs. However these tools cannot be used in a straightforward fashion to 

analyze AspectJ programs, since they do not interpret the characteristics of 

AspectJ source code nor the effects on bytecode caused by the AspectJ weaving 

process (Hilsdale and Hugunin, 2004). The advantage of working on Java 

bytecode level instead of the source code level is that the exception analysis 

algorithm can analyze the exceptions that flow from reused pre-compiled libraries 

(which are responsible for a large number of the exceptions that flow within 

current applications). 

For that reason, we have implemented the tool called SAFE that analyzes 

the woven bytecode of AspectJ programs to (i) discover the exceptions that can be 

signaled from aspect advice (i.e., exception interfaces) and (ii) find out how such 

exceptions propagate in the base code (i.e., exception paths). This exception-flow 

analysis tool was implemented on top of the Soot framework for bytecode 

analysis and transformation. Next sections describe the supporting ideas and the 

heuristics adopted on the implementation of SAFE. 

 

5.1.1. 
Advice Weaving in AspectJ 

In the former versions of AspectJ (previous to version 1.2) the weaving 

process happened in the program source code. The additional behavior of an 

advice was, therefore, directly injected into specific points of the affected classes' 

source code. Currently, the weaving process happens at the bytecode level and 

produces the woven code as pure Java bytecode as a result.  
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The main idea of the bytecode-level AspectJ weaver is to convert aspects 

and advices into standard Java classes and methods, respectively. Advice 

parameters are converted into parameters of these new methods (Hilsdale and 

Hugunin, 2004). In order to coordinate aspects and non-aspects, the system code 

is instrumented and calls to the “advice methods” are inserted at specific join 

points - they are also called static shadows (Hilsdale and Hugunin, 2004). 

Furthermore, if the join points cannot be completely determined at compile time, 

the call to “advice methods” are guarded by dynamic tests to make sure that the 

pieces of advice are executed only when specific conditions are satisfied. Such 

guards are used to implement cflow and cflowbelow pointcut designators 

presented in Chapter 2. 

Therefore, we can identify the places where the pieces of advice add new 

behavior in the bytecode (resultant from the compilation/weaving process) by 

observing the places where the “advice methods” are called in the bytecode. 

Listing 3 illustrates the source code of an aspect and an advised method and 

Listing 5 presents the decompiled
19

 woven bytecode of the advised method.  

 

1. public class ExampleClass { 

2.   public void methodA (){ 

3.      System.out.println(“Just an example”); 

4.   } 

5. } 

 

 

6. package aspects; 

7. aspect ExampleAspect {   

8.    public pointcut aMethodCall() :  

9.        execution(public *  methodA (..)); 

10.    before() : aMethodCall(){ 

11.   System.out.println(“Affected method”); 

12     } 

13.   } 

Listing.3. Example of an aspect that contains a before advice. 

 

 

1. public void methodA (){ 

2. ExampleAspect.aspectOf(). 

    ajc$before$aspects_ExampleAspect$1$dcd6c0af(…); 
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3. System.out.println(“Just an example”); 

4. } 

         Listing.4. Decompiled code of the advised method after weaving process. 

 

In Listing 4 we can observe that the before advice was converted to a call of 

a method defined in the ExampleAspect. The aspectOf()used in line 2 is a 

static method available in all AspectJ aspects, which returns the singleton instance 

of an aspect (it is used by any class to call the public methods from an aspect) 

(Kiczales et al., 2001a). Generally, the name of an advice method is formed in the 

following way: ajc$advicetype$package_aspectName$methodID. Where the 

advicetype can be one of the following: after, afterReturning, 

afterThrowing, before, or around. methodID is a code generated by 

AspectJ weaver to uniquely identify each advice method. before and after 

advice modify the bytecode in a similar way: static calls to advice methods 

defined on Aspects are included in specific places in the affected code. The 

around advice, however, works slightly differently because of the execution of 

the proceed method (Kiczales et al., 2001a) – that proceeds the execution of the 

affected join point. When a method m1 is affected by an around advice, the 

original method body is extracted (block of bytecode) and replaced by a call to a 

static method defined in the affected class, which comprises: (i) the advice method 

body and optionally (ii) a call to the original method body (proceed).  

Table 10 briefly illustrates the effect of aspects on the woven bytecode. The 

first column contains a pointcut expression associated with an advice type and the 

second column presents the partial code of the woven bytecode affected by it. 

<AspectID> represents the name of the aspect on which the advices were defined, 

<ClassID> represents the name of the affected class, and <Id> is the advice 

method unique identifier. This identifier can be formed by a sequential number, or 

a combination between a sequential number, and the identifier by the affected 

code (e.g., class name and method signature). 

 

 

 

                                                                                                                                 

19
 We used Dava decompiler, a module of Soot framework, to decompile the woven bytecode. 
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Advice Type +  

Pointcut  Expression Effect on Decompiled Woven Bytecode 

 

before():  

execution(  

public * *(..)) 

public void method(){ 

    <AspectID>.aspectOf().ajc$before$<Id>(…); 

    //original method body 

    ... 

} 

 

after () returning : 

execution(  

public * *(..))  

public void method(){ 

  //original method body 

   ... 

  <AspectID>.aspectOf().ajc$afterReturning$<Id>(…); 

} 

 

after () throwing 

(Exception e): 

execution(  

public * *(..)) 

public void method() throws Exception{ 

   try{  

    //original method body 

     ... 

  } catch(Exception t){ 

    <AspectID>.aspectOf().ajc$afterThrowing$<Id>(…); 

    throw t; 

  } 

} 

 

after(): 

execution(  

public * *(..))  

public void method() throws Throwable{ 

   try{  

    //original method body 

     ... 

     <AspectID>.aspectOf().ajc$after<Id>(…); 

  } catch(Throwable t){ 

     <AspectID>.aspectOf().ajc$after<Id>(…); 

     throw t; 

} 

 

around():  

execution(  

public * *(..)) 

  public void method(){ 

      <ClassID>.method_aroundBody<Id>$advice(…); 

  } 

  private static final method_aroundBody<Id>$advice(…){ 

      <ClassID>.method_aroundBody<Id>(); 

  } 

//original method body.It represents a call to proceed() 

  private static final method_aroundBody<Id>(…){ 

     ...  

  } 

Table 10. Representation of aspect advice on Java bytecode. 

 

As illustrated above when an advice is associated with a method execution 

pointcut the call to the advice method is included at a specific point of the advised 

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA



 87 

method’s bytecode. On the other hand, when an advice intercepts a method call 

pointcut, the advice method is included on the corresponding bytecode of every 

advised method’s caller. In this work we only account for method call and method 

execution pointcut descriptors. 

 

5.1.2. 
Program Representation 

The program representation used by the SAFE tool to statically calculate the 

exception paths of AspectJ programs is a variant of a program call graph. A 

program call graph (Ryder, 1979) is a directed graph whose vertices and edges 

represent method fragments and method call relations, respectively. Each edge 

connects a caller method to a target method.  

In the call graph used in this approach each vertex may represent: (i) a 

application method – method defined in a class (base code); (ii) an aspect 

method
20

 – method defined in an aspect; (iii) an intertype method – method added 

to a class by an aspect’s intertype declaration; or (iv) an advice method – 

representation of an advice in the byte code, since as illustrated above advices are 

converted into standard Java methods by AspectJ weaver (Hilsdale and Hugunin, 

2004). In the rest of this document, for the sake of simplicity, unless it is explicitly 

mentioned we use the term “advice method” to refer to both, advice and intertype 

methods. 

The advice method appears on specific points of the program call graph 

according to the AspectJ weaver rules detailed in the previous section (see Table 

10). Figure 15 (a) illustrates how before and after affect a program call graph, 

and Figure 15 (b) illustrates how and around advice affects a program call graph. 

This figure illustrates a method (i.e., method1()) that is intercepted by such 

advices, and as a consequence calls to advice methods are included at specific 

points in the program, affecting the program call graph. 

                                                

20 Although aspect methods are represented on the program call graph used by SAFE tool, the 

exception analysis algorithm does not calculate the exception interfaces of such methods since 

they usually implement part of the behaviors defined by advices. 
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before() : execution(method1());

after() : execution(method1());

before() : call(method1());

after() : call(method1());

method1()

method1() body

around() : execution(method1());

...

caller of  method1()

call method1()

call arch advice method fake advised method body method

Legend:

(a) (b)

 

Figure 15. Advice methods on the program call graph. 

 

Each vertex has an inner structure comprising exceptional control flow 

information of interest to our analysis. For the exception flow analysis, the key 

control-flow statements in a method are: try-catch blocks, throw statements and 

method calls. All other statements do not affect the exception-flow analysis. 

Moreover, the order of these statements within a method also does not influence 

the analysis. What matters is whether or not a throw statement or method call 

(which may signal an exception) is contained in a try block. Therefore, the inner 

structure defined by a method comprises: the list of nodes representing the 

statements that compose the method and arcs connecting every statement in a 

protected area (try-block) to the handlers associated with it (catch-clauses). This 

inner structure resembles a simplified representation of a method control flow 

graph (CFG) (Myers, 2004). Figure 16 depicts the program representation 

described here (see Section 5.4.2 for a concrete example of the inner structure of 

call graph vertices). 

Program Call Graph
Vertex Internal Structure

application method

advice method

method call

statement

exceptional control flow

catch clause

Legend:

 

Figure 16. Program Representation. 
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5.1.2.1. 
Dealing with Dynamic Dispatch  

In languages such as Java and AspectJ that allow dynamic dispatch (Gosling 

et al., 1996; Rountev et al., 2004), calling method m defined in the class A may 

represent, in runtime, any one of the redefining methods of m in the inheritance 

tree of A.  To deal with dynamic dispatch in OO systems one of the most used 

algorithms for call graph construction is the Class Hierarchy Analysis (CHA) 

algorithm (Grove and Chambers, 2001). According to it, when a method m1 

defined in class c is overridden in n subclasses of c, every time a method m2 calls 

the method c.m1, n+1 edges are included on the call graph: one from m2 to c.m1, 

and n edges from m2 to every subclass of c that redefines m1. The CHA algorithm 

is used by most inter-procedural analyses proposed so far (Robillard and Murphy, 

2003; Vincenzi et al., 2003; Ishio et al., 2004; Sinha et al., 2004; Fu and Ryder, 

2005).  

 

5.2. 
Heuristics used by the Tool 

Some questions arise when analyzing the exception flow of AspectJ 

programs: (i) How should we assign the responsibility of an exception signaled in 

the system; was it signaled by an aspect or a class? (ii) How should the static 

analysis tool deal with the exception softening construct, which converts a 

checked exception into a SoftException? (iii) How should the static analysis 

tool deal with iterative code? To answer such questions we needed to elaborate a 

set of heuristics. The next sections present the heuristics aimed at taming the 

complexity inherent to the exception flow in AspectJ programs. 

  

5.2.1. 
Blame Assignment in Exception Handling Scenarios 

When an exception is thrown by an element of a software system and is not 

caught inside it, such exception will reach the program entry point and lead to a 

software crash. When such failures occur, it is important to pinpoint the element 

responsible for signaling the uncaught exception (the guilty party) in order to 

understand and solve the exception handling fault.  
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One particular issue raised by the exception handling scenarios of AO 

systems is the ability to identify which element is responsible for signaling and 

handling exceptions: an aspect or a class. Such ability can, for instance, blame the 

aspect integration for breaking the existing exception handling policy 

implemented in the base code. Consequently, it will help the aspect designer to 

define the exception handling policy for the exceptions explicitly or implicitly 

thrown by aspects. 

Figure 17 depicts exception handling scenarios in which aspects were 

directly and indirectly involved. These scenarios are used to explain the heuristics 

for blame assignment adopted in our approach.  

 

E2

Hendler E1

Hendler E2

Methodm2

Method m3

Method m1

Hendler E2

Advice XAdvice a1  

(b)

E2

Method  m4  

Advice a2         

E2

Hendler E1

Hendler E2

Method m2

Method m3

Method m1

Hendler E2

Advice XAdvice a1  

Method  a4  

(a)

call crosscuts exception propagation

Legend :     

E2

exception occurence exception occurence representation

 

Figure 17. Scenarios where advice act as exception signalers. 

  

Considering Figure 17 in scenario (a) the aspect advice a1 explicitly calls 

method m4 in order to achieve some part of its functionality. Since the code inside 

m4 could also be defined inside the advice, we consider m4 as part of the core 

behavior of a1, and call it an auxiliary method (i.e., a method defined inside the 

aspect or inside a class that is only used by aspects). In this scenario we can say 

that advice a1 bears the responsibility of the effects that exception E2 may cause 

in the base code. Therefore, in our approach, every time an advice calls an 

auxiliary method that throws an exception, the advice will take the responsibility 

for signaling the exception.  

There are also scenarios in which m4 presented in Figure 17 scenario (a) 

represents a method defined in the base code (not just an auxiliary method of an 
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advice as described before), which is integrated with another method m1 (of the 

base code) through the advice a1. The advice responsible for integrating two 

existing functionalities from the base code is called “integration advice”. If a 

method m4 throws an exception, this exception will flow through method m1, 

which may not necessarily handle it. Since such functionalities would not be 

related if the aspect weaving did not take place, in our approach the integration 

advice takes the responsibility of signaling the exception that will flow from m4 

to m1.  

Another interesting scenario is depicted by Figure 17 (b). It represents a 

scenario in which the method called by an advice is itself affected by another 

advice. In exception handling scenarios where more than one advice takes place, 

we assign the “exception signaling” responsibility to the advice that first adds a 

behavior that brings a new exception. Therefore, in Figure 17 (b) although method 

m4 implements part of the functionality of advice a1, in our approach the 

crosscutting concern responsible for signaling the exception is advice a2.   

 

5.2.2. 
Exception Paths in AO Systems 

As mentioned before, the exception path starts in the node responsible for 

signaling the exception and ends at the node that contains a catch clause that 

handles it. In case the exception remains uncaught, the last node of the exception 

path represents the program entry point. Thus, adopting the heuristics defined 

previously, the exception paths can be found in the following way:  

• The signaler is a class when an application method (i) explicitly throws an 

exception or (ii) calls a method from a library that implicitly throws an 

exception - and it is not directly or indirectly used by an advice method. 

• The signaler is an aspect when an advice method (or intertype method
21

), 

(i) explicitly throws an exception, (ii) calls a method from a library that 

throws an exception or (iii) calls an application method that throws an 

exception and no method that can be called from it is advised by an aspect. 

                                                

21 An aspect has the ability (through intertype declarations) to add public or private methods, field, 

or interface implementation declarations into a class. The intertype methods are therefore the 

methods added by an aspect into a class through intertype declaration. 
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The exception signaler is, therefore, the first advice on the exception path 

from the element that explicitly throws an exception to the element that handles it. 

Or, if no advice is found, the method that explicitly throws the exception is 

assigned the signaler responsibility. This heuristic is central to the SAFE tool 

implementation. Based on this heuristic, the SAFE tool classifies the exception 

paths according to their Signaler-Handler relationship. This relation assigns the 

responsibility for the exception signaling among the classes or aspects that define 

the application and can give an overview about what are the actions taken on the 

exceptions signaled by crosscutting concerns (directly through the throw 

statement or indirectly through library or application method calls). 

 

5.2.2.1. 
Exception Paths Originating from Exception Softening  

Another heuristic is applied when an exception is softened in a program. 

Figure 18 illustrates two scenarios, one in which the exception thrown by an 

application method is softened (see Figure 18 (a)); and other in which the 

exception signaled by an advice is softened (see Figure 18 (b)). 
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Method m2
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Method m1
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Soft
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Method m2

Method m3

Method m1

E2

Declare Soft

E2

Declare Soft 1
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E2

Advice XAdvice a1  
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E2

Method m0  

Soft

E2

(b)(a)

call crosscuts exception propagation

Legend :     

exception occurence

exception occurence representation exception wraped by SoftException representation of the 

wraped exception
 

Figure 18. Exception softening scenarios. 

 

As mentioned before, when an exception is softened within a specific scope 

(defined by a pointcut expression) an exception object is converted into an 
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instance of SoftException. In the woven bytecode, softening an exception 

corresponds to: (i) handling the original exception; and (ii) throwing an instance 

of SoftException that wraps the original exception.  

Therefore, every time that one exception is softened, two exception paths 

are generated: (i) one from the site where the original exception is thrown until 

the point in the code where it is handled to be converted into a SoftException; 

and (ii) another one that starts where the instance of SoftException is thrown 

until it is handled somewhere in the code. Thus, in our approach, the exception 

paths reported for scenario (a) in Figure 18 are: <m0→m1> for exception E2 and 

<m1→m2→ m3→… > for the instance of SoftException that encapsulates E2. 

Similarly, in scenario (b), <a1> is the exception path of E2, and <a1→m1→ m2→ 

m3→… >  is the exception path of SoftException instance. 

 

5.2.2.2. 
Exception Paths Originating from Library Methods 

When looking for the exceptions that may escape from an application or an 

advice method, the exception-flow analysis algorithm verifies each exception 

explicitly thrown inside the method or implicitly thrown by library method calls.  

When an exception escapes from a library method, we are not interested in the 

internal library methods that caused this exception – which is part of the 

exception interface of the library method. Figure 19 illustrates a library method L1 

whose exception interface is comprised of a set of exceptions signaled (and not 

handled) by the methods called from it. 

Hendler E2

Advice XLibrary Method  L1 

E2

Method  L3

E2

Method  L2Method  L4

E1

Method  L5

Exception Interface: E1, E2

Hendler E3

E3

 

Figure 19. The exception types and the exception interface of a method. 
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In our approach, the exception paths calculated for exceptions that escape 

from library methods do not include the method call chain inside the library - 

which may contain the internal library method that actually signaled the 

exception. Hence, library methods, application methods and advice methods 

should be treated differently by the exception analysis algorithm: the exception 

paths that originate from aspect libraries may not include the actual exception 

signaler (i.e. the internal library method that signaled the exception).  

 

5.3. 
The SAFE Tool  

We developed SAFE (Static Analysis for the Flow of Exceptions) to 

statically analyze the woven bytecode of AspectJ programs in order to find out: (i) 

the exception interfaces of application and advice methods; and (ii) the exception 

paths of each exception signaled on them.  To mine such information, the SAFE 

tool implements an exception-flow analysis procedure that implements the 

heuristics defined above (see Section 5.2). 

Our tool is based on the Soot framework for static analysis of bytecode 

(Section 5.3.2). It uses SPARK, one of the call graph builders provided by Soot, 

(Section 5.3.3), used by other exception analysis tools (Fu et al., 2005; Fu and 

Ryder, 2007). The SAFE tool considers all checked and unchecked exceptions, 

explicitly thrown by the application or implicitly thrown (e.g. via library methods) 

by aspects and classes on the application code.  

 

5.3.1.  
The Tool’s Architecture  

The SAFE tool comprises approximately 20.200 lines of Java source code 

structured in 84 classes
22

. Figure 20 depicts the main elements that comprise the 

SAFE architecture – it omits dependence relations between classes for the sake of 

simplicity. SAFE was developed on top of Soot a framework for Java bytecode 

analysis, and is structured in three main components: the Call Graph, the 

Exception Analysis and the Exception Path Miner. The Util package presented in 

Figure 20 contains auxiliary classes used by these three components. 
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The Call Graph component comprises the classes responsible for building 

the program call graph; this module re-uses the call graph builder defined in Soot 

framework.  The Exception Analysis component comprises a set of classes 

responsible for traversing the program call graph finding the exception interfaces 

of methods and advices and calculating the exception flow of exceptions 

(ExceptionAnalysis class); it also contains an ExceptionFilter that excludes a 

specified set of exceptions from being analyzed (see Section 5.4.3). Moreover, 

there is an element responsible for storing the exception paths in a structured way 

(ExceptionPathStorage class). The Exception Path Miner component comprises 

the classes that classify each exception path according to its signaler (i.e., class 

method, aspect advice, intertype or declare soft constructs) and handler. Such 

classification helps the developer to discover the new dependencies that arise 

between aspects and classes on exceptional scenarios. 

 

CallGraph

SceneTransformerSceneTransformer

SAFE Tool

UnitUnit

SootClassSootClass SootMethodSootMethod

Call GraphException Analysis
Exception Path Miner

Util

Soot Framework

ExceptionAnalysisExceptionAnalysis

Scene

ExceptionPathMinerExceptionPathMiner

ExceptionPathExceptionPath

SparkCallGraphBuilderSparkCallGraphBuilder ExceptionObjectExceptionObject

AspectJAdviceSintaxAspectJAdviceSintax

ExceptionFilterExceptionFilter

SignalerHandlerMapSignalerHandlerMap

ClassFilterClassFilter

ExceptionPathStorageExceptionPathStorage

Application Specific

AppSpecificExceptionAnalysis

CalcCodeMetricsCalcCodeMetrics

PackManager

Main

StartAnalysisStartAnalysis

ExceptionHandlingContractExceptionHandlingContract

 

Figure 20. The SAFE tool architecture. 

 

                                                                                                                                 

22
 This metric excludes the amount of Java code reused form libraries (e.g., Soot framework). 
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5.3.2.    
The Exception Analysis Component 

The Exception Analysis component implements an interprocedural 

algorithm to find handlers for exceptions that escape from every application or 

advice method. The algorithm is divided into three major phases: (1) constructing 

the program call graph; (2) finding the exceptions signaled by every application 

and advice method; (3) calculating the exception paths per signaled exception. 

The pseudo code presented below briefly illustrates each one of these phases, 

omitting some implementation details.  

The first step of the algorithm is the construction of a variation of the 

program call graph (as detailed in Section 5.1.2). The element responsible for 

building the program call graph is the SparkCallGraphBuilder. This element 

reuses one of the call graph builders available in Soot detailed in Section 5.3.3. 

Once the call graph was built, every application method and advice method is 

analyzed in order to discover which exceptions can be signaled from them. The 

set of exceptions that can be signaled by a method comprises: (i) the exceptions 

explicitly thrown by throw statements, and (ii) implicitly thrown by library 

method calls.  

When a throw statement signaling exception e1 is found in a method body 

m1, the algorithm checks whether it is contained within any try-catch block, and if 

there is any handler defined to e1 (or to any of its supertypes). If the throw 

statement is not protected by a try-catch block or no handler is defined for e1 in a 

try-catch block surrounding it, e1 is included in the list of exceptions that can 

escape from the method. If e1 is handled inside m1 this exception path of e1, 

which starts and ends in m, is stored.  

When a call to a library method is found, it is then recursively analyzed. 

After the exception interface of the library method is calculated, the algorithm 

checks whether the method call is contained within any try-catch block, and if 

there is any handler defined to the exceptions that comprise the exception 

interface of the library method (or to any of its supertypes). Thus, all exceptions 

not adequately handled inside the analyzed method are included on the list of 

exceptions that escape from it. At this step the algorithm uses the exceptional flow 

information defined on the inner structure of call graph vertices presented above 
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(Section 5.1.2). The algorithm does not recursively analyze the application 

methods called from another application method since every application method is 

analyzed on its own. Listing 5 offers an example to illustrate how this step works. 

 

   1. package myapplication; 

   2.  ... 

   3. int retrieveDataFromReport() throws FileNotFoundException{ 

   4.   … 

   5.   FileReader fr = new FileReader(path); 

   6.   BufferedReader bf = new BufferedReader(fr);        

   7.   try{ 

   8.     String aux = bf.readLine(); 

   9.     int sum = Integer.parseInt(aux);        

   10.     if (sum < 100) { 

   11.       throw new IncompleteRecordException();  

   12.     } 

   13.   }catch(IOException ex){ 

   14.     io.printStacktrace(); 

   15.   } 

   16.   LogLibrary.log(“End of operation… ”); 

   17. } 

   

1. package loglibrary; 

2. public class LogLibrary { 

  3. void log(String message) { 

  4.    if(!pingLogServer()){ 

  5.      throw new LogFileUnavailableException(); 

  6.    } 

  7.    … 

  8. } 

 Listing.5. Looking for the exceptions signaled by an application method. 

 

In Listing 5, the method retrieveDataFromReport throws only one 

checked exception (i.e., FileNotFoundException) declared on its signature. To 

find out the unchecked exceptions that can be signaled from them, the algorithm 

analyzes every throw statement, and every library method call, and checks 

whether or not the exceptions signaled from them are handled inside the method. 

Thus, the exception-analysis algorithm analyzes every statement of the 

retrieveDataFromReport method looking for: (i) throw statements or library 

method calls. When a library method is found it is recursively analyzed: every 
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throw statement and method called from it is analyzed
23

. The algorithm stops 

when every throw statement and library method call is analyzed and reports the 

list of exceptions that can be signaled from the retrieveDataFromReport 

method: LogFileUnavailableException, IncompleteRecordException, 

and FileNotFoundException. 

Through this example we can observe why the exception flow analysis 

cannot be performed as an intraprocedural analysis: it needs to recursively analyze 

the library code called from an analyzed method to discover which exceptions can 

be signaled from it.  

After the algorithm finds every exception that can be signaled by application 

and advice methods, its third phase starts. For each of these exceptions the 

algorithm traverses the program call graph - in the reverse direction with respect 

to the execution flow - looking for a proper handler to the exception. This 

backward data-flow analysis simulates the exception propagation that happens 

during runtime. During the backward analysis, each method (vertex in the 

program call graph) in which the exception propagates is recorded as part of the 

exception path. Thus, the exception interface of each application or advice method 

is comprised of: the exception types that can be signaled from it (discovered on 

the second step of the algorithm) and the exception types that propagate from it 

(discovered when calculating the exception paths of each exception). 

 

5.3.2.1. 
Integration with Soot Framework 

As illustrated in Figure 20, SAFE tool is developed on top of the Soot 

framework for Java bytecode analysis. The Soot framework adopts the Pipes and 

Filters architecture style (Buschmann et al., 1996). It divides the bytecode 

processing task into a sequence of smaller, independent processing phases called 

packs. Therefore, the bytecode analysis triggers a sequence of processing packs, 

each performing a specific set of functions.  

The first pack parses class or source java files and produces the Jimple code, 

an intermediate representation available on Soot (see Section 5.4.1) to be fed into 

                                                

23
 To deal with interprocedural loops, the algorithm recursively analyzes each method in a call 

chain only once.  
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the other packs. Each pack comprises a set of sub-phases that can perform either 

intraprocedural analysis (i.e. act on individual methods) or interprocedural 

analysis (i.e., acts on the whole set of available classes). Each pack works on a 

specific intermediate representation (see Section 5.4.1).  

Soot is extensible by adding new phases that perform a required analysis or 

program transformation. Soot provides the BodyTransformer abstract class to 

represent all intraprocedural sub-phases, and the SceneTransformer abstract 

class to represent the interprocedural sub-phases. Since the exception flow 

analysis needs a whole program representation (i.e., the program call graph), we 

extended the SceneTransformer class as illustrated in Figure 20. Listing 6 below 

presents the partial code of the ExceptionAnalysis class. It defines the 

internalTransform method that implements the exception analysis algorithm 

detailed in previous section.  

 

public abstract class ExceptionAnalysis 

                                   extends SceneTransformer{ 

   abstract boolean isAnAspect(); 

   abstract String[] getApplicationPackages(); 

   ... 

 

  protected void internalTransform(String phase, Map arg1) { 

   

    //1. Call graph construction 

    cg = Scene.v().getCallGraph(); 

    Iterator itsce = Scene.v().getApplicationClasses().iterator(); 

 

    //Iterate per class 

    while (itsce.hasNext()) { 

 

      SootClass currentClass = (SootClass) itsce.next(); 

    ... 

        Iterator itmet = currentClass.getMethods().iterator(); 

  

      while (itmet.hasNext()) { 

      ExThrowableSet metExceptions = new ExThrowableSet(); 

      SootMethod met = (SootMethod) itmet.next(); 

      ... 

           metExceptions =findEscapeExceptions (b,met,callChain); 

      Iterator itExc = metExceptions.iterator(); 

 

      while( itExc.hasNext() ){ 

  

            SootClass excecao = (SootClass) itExc.next(); 

   if(!shouldFilter(excecao.getType().getClassName()){ 

   ExecutionStack stack = new ExecutionStack(); 

        boolean escapa = true; 

   lookforHandler (met,excecao,stack); 

              }//if   

      }// while 

        }// while method 

    }//while class 

  } 

} 

   Listing.6. Code snippet for ExceptionAnalysis class. 
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The ExceptionAnalysis also defines two abstract methods, isAnAspect 

and getApplicationPackages, which should be implemented by the 

ExceptionAnalysis defined per analyzed application (see 

AppSpecificExceptionAnalysis in Figure 20). Each application should 

specify the application packages and the aspects that comprise it. The 

getApplicationPackages is useful to distinguish between library methods and 

application methods. Such information is needed to implement the heuristics 

defined in Section 5.2. 

To execute the exception analysis, one instance ExceptionAnalysis is 

created and added as a new sub phase of a Soot pack. The code snippet below 

illustrates the piece of code responsible for adding ExceptionAnalysis in one of 

the Soot packs.   

 

1. public static void main(String[] args) { 

2. 

3.    if(args.length == 0) { 

4.  System.exit(0); 

5.    } 

6. PackManager.v().getPack("wjtp").add(newTransform("wjtp.SAFE",  

            AppSpecificExceptionAnalysis.getInstance())); 

7.      

8.    soot.Main.main(args); 

9. } 

   Listing.7. Adding a new phase to Soot. 

 

The ExceptionAnalysis transformer is added to a Soot pack called wjtp 

(whole Jimple transformation pack). The wjtp pack comprises every 

transformation or analysis that works on Jimple intermediate transformation and 

needs a whole program representation (i.e., the program call graph) to perform an 

interprocedural analysis. 

 

5.3.3.    
The Call Graph Builder 

The component responsible for building the call graph in the SAFE tool 

uses the Soot Pointer Analysis Research Kit (SPARK)(Lhotak, 2002), one of the 
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call graph builders provided by Soot. The SPARK framework uses a points-to 

analysis algorithm to improve the precision of call graph construction (Lhotak, 

2002).  

The goal of points-to analysis is to compute the set of possible targets that 

can be referred by a calls site. In AspectJ, as in Java, instance methods’ invocation 

is based on dynamic dispatch (Gosling et al., 1996; Colyer, 2004) - the target 

method of a call site is selected at runtime depending on a run-time value of a 

reference variable. This means that the whole program analysis requires an 

approximation of the program call graph. The simplest algorithm called Class 

Hierarchy Analysis (CHA) (Grove and Chambers, 2001), presented in Chapter 2, 

assumes that every reference might point to every other variable of its subtype. 

However, it is conservatively sound (Grove and Chambers, 2001) and not 

accurate. The SPARK is based on Andersen’s points-to analysis algorithm, which 

provides a more accurate analysis despite requiring more processing time and 

memory (Grove and Chambers, 2001; Lhotak, 2002).  

SPARK’s algorithm is field-sensitive (Mine, 2006) (it distinguishes between 

different fields of an object), context-insensitive (Liang et al., 2001) (it does not 

distinguish between different calling contexts of the same method) and flow-

insensitive (Foster et al., 2002) (the analysis does not take into account the order 

in which program statements are executed). For more details about SPARK’s 

points-to analysis algorithm please refer to (Grove and Chambers, 2001; Milanova 

et al., 2002; Lhotak and Hendren, 2006). Empirical studies (Grove and Chambers, 

2001; Lhotak, 2002; Rountev et al., 2004) have shown that a call graph generated 

by SPARK algorithm contains less spurious method call chains when compared to 

other context-insensitive call graph construction algorithms such as CHA – which 

is used by most inter-procedural analysis.  

In the empirical study reported by Rountev et al. (2004) the call graph 

generated using CHA reported approximately 26,5% of spurious method call 

chains (i.e., infeasible sequence of method calls). And, in the same study, the call 

graph build using SPARK’s algorithm was comprised of 6,4% of spurious call 

chains. 
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5.3.4. 
The Exception Path Miner 

The Exception Analysis component presented in Section 5.3.2 calculates the 

exception paths of every exception that escapes from aspect advice and 

application methods. The exception paths are stored in structured files as 

illustrated in Listing 8 below. The Listing 8 presents one exception path found in 

Health Watcher system described in Chapter 3, Section 3.1.1.  

 

<exceptionPath exception=org.aspectj.lang.SoftException>  

  <calltchain> 

    <method>healthwatcher.aspects.persistence.HWTransactio    

    nManagement:voidajc$afterThrowing$healthwatcher_aspects  

    _persistence_HWTransactionManagement$3$a03b16aa()</method> 

    <method>healthwatcher.business.HealthWatcherFacade:lib  

    .util.IteratorDskgetSpecialityList()</method> 

    <method>healthwatcher.view.servlets.ServletGetDataForSear     

     chBySpeciality: void doGet_aroundBody0(healthwatcher.vi  

     ew.servlets.ServletGetDataForSearchBySpeciality,javax.se    

     rvlet.http.HttpServletRequest,javax.servlet.http.HttpSer  

     vletResponse)</method> 

   </calltchain> 

   <action type=”ExceptionSubsumption” detail=”org.aspectj.  

   lang.SoftException capturedBy java.lang.Exception”/> 

</exceptionPath> 

Listing.8. Structured representation of an exception path. 

 

The ExceptionPathMiner class (see Figure 21) parses the exception path 

files and classifies each exception path according to its Signaler-Handler 

relationship defined by the heuristics presented in Section 5.2.    
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Signaler Location

Handler Location

Handler Type

class

aspect

uncaught

 

Figure 21. Three-dimension classification for exception paths. 

 

Figure 21 presents a three-dimension classification, in which each axis 

represents one property of the exception path for which a set of values are 

permitted. The first axis specifies the exception signaler, which can be: a class 

method, an advice, a method defined as intertype declaration, or a declare soft 

construct. The second axis defines the exception handler associated with the 

exception path. The exception can be handled by a class method, by after and 

around advice (Filho et al., 2006; Filho et al., 2007), or the declare soft 

construct. The declare soft can play both roles (i.e., exception signaler and 

handler) because the moment an exception is softened the declare soft construct 

handles the exception that was softened, and signals an instance of 

SoftException that wraps the original exception. When no handler is defined for 

an exception it remains uncaught and reaches the application entry point (i.e., 

main method), causing a software crash. The third axis represents the handler 

action. An exception occurrence can be caught in two basic ways. It can be caught 

by a specialized handler when the catch argument is the same type of the caught 

exception type. Alternatively, it can be caught by subsumption when the catch 

argument is a supertype of the exception being caught.  

The ExceptionPathMiner, that classifies the exception paths according to 

the properties presented above, also allows the SAFE tool user to specify simple 

exception handling contracts (see the ExceptionHandlingContract class in 

Figure 20). These contracts define the Signaler-Handler relation that exceptions 
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thrown in the program should obey. An exception handling contract comprises the 

following information: (i) the name of the signaled exception; (ii) the signature of 

the method that signals it; (iii) the method signature that handles it; and (iv) the 

handler type, which can be same_exception when the exception is handled by a 

handler of the same type, or subsumption when the exception is handled by 

subsumption. 

 

<exception type=””> 

   <signaler signature=”” /> 

   <handler signature=””  type=”” /> 

</exception> 

                   Listing.9. Structure of an exception handling contract. 

 

 

These contracts can be automatically checked during the exception path 

classification. After parsing and classifying the exception paths, the Exception 

Path Miner may calculate additional information concerning all exception paths, 

such as: (i) the number of exceptions thrown by aspects that remained uncaught; 

(ii) the number of exceptions thrown by classes that remained uncaught; (iii) the 

number of exceptions thrown by aspects and caught by subsumption on classes; 

(iv) the number of exceptions thrown by classes and handled by aspects; (v) the 

most frequently thrown exceptions; (vi) the exceptions most frequently thrown by 

aspects; (vii) the exceptions most frequently thrown by classes.  

The ExceptionPathMiner output (the exception paths classification, the 

contract checking and the extra quantitative information) is reported on .xls files 

that can be used by developers to the guide the manual code inspections of the 

exception handling code. 

 

5.4. 
Implementation Details 

This section presents implementation details concerning intermediate 

representation of bytecode available in the Soot framework and used by the SAFE 

tool (Section 5.4.1). Moreover, it details the low-level design decisions made 

during the implementation of SAFE (Sections 5.4.2 and 5.4.3). 
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5.4.1. 
Soot Intermediate Representation 

The SAFE tool is implemented on top of the Soot
24

 Java Analysis and 

Transformation Framework version 2.0.1 (Vallée-Rai, 2000). The static analysis is 

not performed on the raw bytecode, but on an intermediate representation for Java 

bytecode available in Soot, called Jimple (Vallée-Rai, 2000; Einarsson and 

Nielsen, 2007). Jimple is a typed, 3-address, statement-based intermediate 

representation. It is called 3-address because every expression in Jimple only 

references at most three local variables or constants. Every possible instruction in 

Java bytecode
25

 are represented by the 15 statements available in the Jimple 

representation without loss of information (Einarsson and Nielsen, 2007). It 

results in a regular and very convenient representation for performing code 

analysis. Listing 10 presents the source code of a simple Java method. Listings 11 

and 12 illustrate the bytecode representation and the Jimple representation of this 

method, respectively.  

 

1. public static void main(String[] args) { 

2.    Example f = new Example(); 

3.    int a = 2; 

4.    int b = 3; 

5.    int x = (f.method(4) + a) * b; 

6. } 

   Listing.10. Code snippet of a Java method. 

 

public static void main(java.lang.String[]) 

Max stack size: 2 

Max local variables: 5 

Code size: 24 

   0 new #2 <Class test.Example> 

   3 dup 

   4 invokespecial #17 <Method Example()> 

   7 astore_1 

   8 iconst_2 

   9 istore_2 

  10 iconst_3 

  11 istore_3 

  12 aload_1 

  13 iconst_4 

  14 invokevirtual #21 <Method int method(int)> 

  17 iload_2 

  18 iadd 

  19 iload_3 

  20 imul 

                                                

24
 http://www.sable.mcgill.ca/ 

25
 The java bytecode allows approximately 200 different intructions. 
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  21 istore_4 

  23 return 

   Listing.11. The bytecode representation of a Java method. 

 

1. public static void main(java.lang.String[]) { 
2.   java.lang.String[] r0; 

3.   Example $r1, r2; 

4.   int i0, i1, i2, $i3, $i4; 

5.   r0 := @   parameter0: java.lang.String[]; 

6.   $r1 = new Example; 

7.   specialinvoke $r1.<Example: void <init>()>(); 

8.   r2 = $r1; 

9.   i0 = 2; 

10.  i1 = 3; 

11.  $i3 = virtualinvoke r2.<Example: int method()>(4); 

12.  $i4 = $i3 + i0; 

13.  i2 = $i4 * i1; 

14.  return; 

    15. } 

   Listing.12. Jimple representation of a Java method. 

 

In the Jimple code illustrated in Listing 12 we can recognize the statement-

based structure from Java, and the method invocation style is similar to the one in 

Java bytecode. The variables without the prefix $ represent user defined local 

variables, and the ones starting with a $ prefix represent stack positions. We can 

also observe that every expression obeys the 3-address form.  

 

5.4.2. 
Exceptional Control Flow 

As mentioned before, in AspectJ language, in addition to methods, an aspect 

may contain other modular units such as advice and inter-type methods. In this 

section we use the word “method” to refer to a piece of advice, an inter-type 

method, a method in an aspect or a method in a class - since advice and inter-type 

methods are converted to methods by aspect weaver. The Listings below show a 

Java method and its corresponding Jimple code.  

 
1. public class CFGExample  { 

2.   int m(int[] a, int i, int j) { 

3.   int sum = 0; 

4.   try { 

6.       this.printStatus(); 

7.       sum += a[k]; 

8.   } catch (NullPointerException e) { 

8.      return 0; 

10.  } catch (RuntimeException e) { 
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11.     sum += 0; 

12.  } 

13. return sum; 

14.} 

   Listing.13. Piece of Java method to illustrate the internal structure of a call 

graph vertex in our approach. 

 

 
1. int m(int[], int, int) { 

2. CFGExample r0; 

3. int[] r1; 

4. int i0, i1, i2, i3, $i4; 

5. java.lang.NullPointerException r2, $r3; 

6. java.lang.ArrayIndexOutOfBoundsException $r4, r5; 

7. r0 := @this; 

8. r1 := @parameter0; 

9. i0 := @parameter1; 

10. i1 := @parameter2; 

11. i2 = 0; 

12. i3 = i0; 

13. virtualinvoke r0.<void printStatus()>(); 

14.    $i4 = r1[i3]; 

15. i2 = i2 + $i4; 

16. label3: 

17. $r3 := @caughtexception; 

18. r2 = $r3; 

19. return 0; 

20. label4: 

21. $r4 := @caughtexception; 

22. r5 = $r4; 

23. i2 = i2 + 0; 

24. label5: 

25. i3 = i3 + 1; 

26. goto label0; 

27. label6: 

28. return i2; 

29. 

30. catch java.lang.NullPointerException from label1 to   

    label2 with label3; 

31. catch java.lang.RuntimeException from label1 to label2  

    with label4; 

     Listing.14. Jimple representation of a Java method. 
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Figure 22 illustrates the internal structure of method m presented above in 

the call graph. The internal structure stores a partial representation of the method’s 

control flow graph. Each statement is represented by a node in a linked list, which 

is linked to the next statement in the code. When the statement is protected by a 

try-catch block another link is added between the protected statement and the 

catch clause statement – the catch statement node specifies the type of the catch 

clause parameter (see the nodes identified with labels 13 and 14 in Figure 22).  

For the sake o simplicity this structure omits the statements defined inside catch 

clauses. 

 

r0:=this

r1:=@parameter0

virtual invoke ...

i2=0

i0:=@parameter1

i1:=@parameter2

i3=i0

label 11: $i4=r1[i3]

i2=i2+$i4

label14: $r4 := @caughtexception
type: ArrayIndexOutOfBoundsException 

label13: $r3 := @caughtexception
type: RuntimeException

Legend :     

links a statement to a catch

clause that protects it

links a statement to the 

subsequent statement in 

the code.

 

Figure 22. Call graph vertex internal structure. 

 

5.4.3.Exception Filtering  

The SAFE tool considers all checked and unchecked exceptions. In 

languages such as AspectJ, where many unchecked exceptions can be thrown by 

the Java virtual machine (e.g., NullPointerException, 

IllegalMonitorStateException, ArrayIndexOutOfBoundsExcep-tion, 

ArrayStoreException, NegativeArraySizeException, 

ClassCastException, ArithmeticException) almost every operation may 

throw an unchecked exception (thrown by JVM). Thus, including every 

unchecked exception can generate too much information, which may affect the 

usability of the exception analysis (Chang et al., 2001; Jo et al., 2004). For this 

reason, the SAFE tool defines the ExceptionFilter component that enables the 

developer to filter the exceptions that should not be considered during the 
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analysis. The list of exceptions that should be filtered is defined on an XML file 

that is loaded just before the exception analysis begins, by the 

ExceptionFilter component. 

 

5.4.4. 
Dealing with Exception-Related AspectJ Weaver Residues 

Residues of AspectJ constructs explicitly affect the exception interface of 

advised methods. For instance, consider the method presented in Listing 15 

(extracted from Health Watcher system presented in Chapter 3). This method 

should be intercepted by three different advices (i.e., a before advice, an after 

returning advice and an after throwing advice). 

 

1. public void updateComplaint(Complaint complaint) throws      

2.    ObjectNotFoundException, ObjectNotValidException { 

3. complaintRecord.update(complaint); 

4.} 

Listing.15. Code snippet of a method before the weaving process. 

 

The code snippet below illustrates the decompiled woven bytecode of the 

method presented in Listing 15. As detailed before, every advice is converted into 

a static method that is called at specific points in the code (i.e., join points).  

Besides including method calls to the advice methods the AspectJ weaver also 

includes additional code on the advised methods. Such code is known as residue 

of the match. In the Listing below the advice methods are represented in gray and 

the residues of the match are underlined. Note that the list of exceptions declared 

on the method’s signature changed in the woven bytecode. 

 

1.  … 

2.   

3.  public void        (Complaint  r1) throws  

4.        ObjectNotFoundException, ObjectNotValidException,  

5.        Throwable, TransactionException { 

6. 

7.   try{ 

8.     HWTransactionManagement.aspectOf().ajc$before$healthwatcher    

       _aspects_persistence_HWTransactionManagement$1$a03b16aa(); 

10. 

11.     complaintRecord.update(r1); 
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12. 

13.    HWTransactionManagement.aspectOf().ajc$afterReturning$healt  

hwatcher_aspects_persistence_HWTransactionManagement$2$a03b16aa(); 

14.     return; 

15. }  

16. catch (Throwable $r6) { 

17. 

18.  HWTransactionManagement.aspectOf().ajc$afterThrowing$healthwa 

   tcher_aspects_persistence_HWTransactionManagement$3$a03b16aa(); 

19.      throw $r6; 

20. } 

21.} 

Listing.16. Code snippet of a method after the weaving process. 

 

In this example the residue of the match is the additional code that handles 

and re-throws instances of Throwable. The residue of after throwing advice 

was to catch-clause in line 16 and the re-throw statement in line 19. A naive 

exception analysis algorithm would generate exception paths for the instance of 

Throwable re-thrown in line 19. However, this exception handling and re-

signaling pattern is a residue of the after throwing advice. For that reason our 

exception identifies and ignores the pieces of code that represent residues of the 

math – which would generate misleading exception flow information. 

The declare soft construct also generates similar residues. As explained 

before, this construct wraps an exception in an instance of SoftException and re-

throws it. The code snippet below shows the decompiled woven bytecode of an 

advice affected by the declare soft construct
26

.  

 

1. public class HWTransactionManagement { 

2.    public void ajc$before$healthwatcher_aspects_persistence_   

3.              HWTransactionManagement$1$a03b16aa() throws   

4.              lib.exceptions.TransactionException { 

5.     

6.        IPersistenceMechanism $r2; 

7.        $r2 = this.getPm(); 

8.        try 

9.        { 

10.            $r2.beginTransaction(); 

11.       } 

                                                

26
  This code was also from Health Watcher system. 
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12.       catch (TransactionException $r3) { 

13.          if ( ! ($r3 instanceof RuntimeException)) { 

14.                throw new SoftException($r3); 

15.          }else{ 

16.                throw $r3; 

17.            } 

18.        } 

19.    } 

Listing.17. AspectJ weaver residues associated with the declare soft 

construct. 

 

Since SoftException is an unchecked exception, it does not need to be 

explicitly declared on the methods signature as part of its explicit exception 

interface (lines 2-4). A naive exception analysis algorithm would calculate the 

exception path for the two exceptions thrown in this method body (lines 14 and 

16).  However, in this scenario only one exception will be thrown in runtime: an 

instance of SoftException if the exception being softened is not an instance of 

RuntimeException or the original exception. Our exception analysis algorithm 

keeps track of the type associated with each application exception, and in a 

scenario such as the one presented in Listing above only one exception occurrence 

is considered. 

 

5.5.     
Tool’s Performance  

We have executed the SAFE tool to find the exception paths of the object-

oriented versions and aspect-oriented versions of the three medium-sized systems 

described in Chapter 3. It was executed on a PC with an Intel Core2 2GHz 

processor using Windows XP with 1GB of RAM memory. The time spent to 

calculate the exception paths for each system is presented in Table 11. In Table 11 

the call graph size comprises the number of application methods, advice methods 

and the methods reachable from them (e.g., methods defined on libraries); the line 

identified by the “Complete analysis” attribute comprises the processing time 

presented (in seconds) to complete the exception analysis; the line identified by 

“Call graph construction” comprises the time spent to build the program call 

graph before (the first step of the exception analysis). 
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 Health Watcher  Mobile Photo  JHotDraw 

 V1 V9 V4 V6 V1 

Object-Oriented            

   Call graph size (# nodes) 94.738 48.263 44.933 46.241 88.199 

   Call graph construction (# seconds) 3.157,8 404,2 398 403,4 9.977,2 

   Complete analysis (# seconds) 3.354 453 587 441 10.720 

Aspect-Oriented           

   Call graph size (# nodes) 47.622 49.567 45.344 46193 89.794 

   Call graph construction (# seconds) 416,8 472,1 408,2 399,6 8.682,2 

   Complete analysis (# seconds) 596 540 676 422 9.610 

Table 11. The exception analysis performance using the SAFE tool. 
 

Listing 18 represents one of the exception paths found by the exception 

analysis of AJHotDraw
27

 - that system whose exception analysis required the 

highest processing time (9.610 seconds). The exception path illustrated in Listing 

18 includes both application and library methods. To distinguish between both 

kinds of methods, application method calls are shaded while method calls inside 

libraries are not. 

 

1. org.jhotdraw.contrib.WindowMenu: void buildChildMenus()  

2. org.jhotdraw.contrib.WindowMenu: void access$1() 

3. org.jhotdraw.contrib.WindowMenu$3: void menuSelected() 

4. javax.swing.JMenu: void fireMenuSelected() 

5. javax.swing.JMenu$MenuChangeListener: void stateChanged() 

6. javax.swing.text.DefaultCaret: void fireStateChanged() 

7. javax.swing.text.DefaultCaret: void changeCaretPosition() 

8. javax.swing.text.DefaultCaret: void handleSetDot() 

9. javax.swing.text.DefaultCaret: void setDot() 

10. javax.swing.text.DefaultCaret: void setDot() 

11. javax.swing.text.JTextComponent: void 

setInputMethodCaretPosition() 

12. javax.swing.text.JTextComponent: void processInputMethodEvent() 

13. java.awt.Component: void processEvent() 

14. java.awt.Container: void processEvent() 

15. java.awt.Window: void processEvent() 

16. java.awt.Component: void dispatchEventImpl() 

17. java.awt.Container: void dispatchEventImpl() 

18. java.awt.Window: void dispatchEventImpl() 

19. java.awt.Component: void dispatchEvent() 

20. java.awt.Container: void addImpl() 

21. javax.swing.JFrame: void addImpl() 

                                                

27
 Parameters are omitted for readability. 
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22. java.awt.Container: void add() 

23. javax.swing.JFrame: void setRootPane() 

24. javax.swing.JFrame: void frameInit() 

25. javax.swing.JFrame: void <init>() 

26. sun.awt.im.InputMethodJFrame: void <init>() 

27. sun.awt.im.InputMethodContext: java.awt.Window 

createInputMethodWindow() 

28. sun.awt.im.CompositionArea: void <init>() 

29. sun.awt.im.CompositionAreaHandler: void createCompositionArea() 

30. sun.awt.im.CompositionAreaHandler: void grabCompositionArea() 

31. sun.awt.im.InputMethodContext: void grabCompositionArea() 

32. sun.awt.im.InputContext: void activateInputMethod() 

33. sun.awt.im.InputContext: void changeInputMethod() 

34. sun.awt.im.InputContext: boolean selectInputMethod() 

35. sun.awt.im.InputContext: void <init>() 

36. sun.awt.im.InputMethodContext: void <init>() 

37. java.awt.im.InputContext: java.awt.im.InputContext getInstance() 

38. java.awt.Window: java.awt.im.InputContext getInputContext() 

39. java.awt.Component: void removeNotify() 

40. java.awt.Container: void removeDelicately() 

41. java.awt.Container: void setComponentZOrder() 

42. javax.swing.JLayeredPane: void setLayer() 

43. javax.swing.JLayeredPane: void setLayer() 

44. javax.swing.JLayeredPane: void addImpl() 

45. java.awt.Container: java.awt.Component add() 

46. javax.swing.SwingUtilities: … getCellRendererPane() 

47. javax.swing.SwingUtilities: void paintComponent() 

48. org.jhotdraw.contrib.html.HTMLTextAreaFigure: float renderText() 

49. org.jhotdraw.contrib.html.HTMLTextAreaFigure: void generateImage() 

50. org.jhotdraw.contrib.html.HTMLTextAreaFigure: float drawText() 

51. org.jhotdraw.contrib.html.HTMLTextAreaFigure: void draw() 

52. org.jhotdraw.standard.CompositeFigure: void draw() 

53. org.jhotdraw.standard.StandardDrawingView: void drawDrawing() 

54. org.jhotdraw.standard.StandardDrawingView: void drawAll() 

55. org.jhotdraw.standard.SimpleUpdateStrategy: void draw() 

56. org.jhotdraw.standard.StandardDrawingView: void paintComponent() 

57. javax.swing.JComponent: void paint() 

58. org.jhotdraw.contrib.zoom.ZoomDrawingView: void paint() 

59. javax.swing.JViewport: void paintViewDoubleBuffered() 

60. javax.swing.JViewport: void paintView() 

61. javax.swing.JViewport: void flushViewDirtyRegion() 

62. javax.swing.JViewport: void setViewPosition() 

63. javax.swing.ViewportLayout: void layoutContainer() 

64. java.awt.Container: void layout() 

                                                                                                                                 

 

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA



 114 

65. java.awt.Container: void doLayout() 

66. java.awt.Container: void validateTree() 

67. java.awt.Container: void validate() 

68. java.awt.Window: void show() 

69. java.awt.Component: void show(boolean) 

70. java.awt.Component: void setVisible() 

71. javax.swing.JComponent: void setVisible() 

72. javax.swing.JRootPane: java.awt.Component createGlassPane() 

73. javax.swing.JRootPane: void <init>() 

74. javax.swing.JInternalFrame: javax.swing.JRootPane createRootPane() 

75. javax.swing.JInternalFrame: void <init>() 

76. org.jhotdraw.contrib.MDIDesktopPane: … createContents() 

77. org.jhotdraw.contrib.MDIDesktopPane: void addToDesktop() 

78. org.jhotdraw.contrib.MDI_DrawApplication: void newWindow() 

79. org.jhotdraw.samples.javadraw.JavaDrawApp$4: void execute() 

80. org.jhotdraw.samples.javadraw.JavaDrawApp: void 

execute_aroundBody0() 

81. org.jhotdraw.samples.javadraw.JavaDrawApp: void 

execute_aroundBody1$advice() 

82. org.jhotdraw.samples.javadraw.JavaDrawApp: void 

executeCommandMenu() 

Listing.18. Method call chain associated with an exception path found in 

AJHotDraw. 

We can observe that most of the method calls presented in Listing 18 

represent method calls inside Java libraries. Consequently, most of the AJHotdraw 

exception analysis processing time was dedicated to calculate the exception path 

inside such libraries (see Figure 23).  
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Figure 23. Library methods in an exception path. 

 

Although the exception path may include both application and library 

methods, there is not much interest in the calling relationships among library 

methods for tools dedicated to software understanding, such as SAFE. The static 

analysis could run more efficiently if a summarized exception path could 

substitute the complete exception path presented above. We could reduce the size 

of such exception paths in two ways: (i) filtering library calls when calculating the 

exception paths or (ii) filtering such paths when reporting them.  

The first strategy could lead to imprecise exception paths in the presence of 

library callbacks (Zhang and Ryder, 2007) (i.e. when the library calls back the 

application code) – see Figure 23. Our approach adopts the second strategy, as 

illustrated in Listing 19 below. In this listing some method calls were filtered after 

the exception analysis and the method calls to libraries were replaced by generic 

references to library packages. The summarized exception paths facilitate the 

manual inspection of the exception handling code and the exception handling 

contract checking (see Section 5.3.4). 

  

1. org.jhotdraw.contrib.WindowMenu: void buildChildMenus()  

2. org.jhotdraw.contrib.WindowMenu: void access$1() 

3. org.jhotdraw.contrib.WindowMenu$3: void menuSelected() 

4. library method calls: java.swing,java.awt 
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5. org.jhotdraw.contrib.html.HTMLTextAreaFigure: float renderText() 

6. org.jhotdraw.contrib.html.HTMLTextAreaFigure: void generateImage() 

7. org.jhotdraw.contrib.html.HTMLTextAreaFigure: float drawText() 

8. org.jhotdraw.contrib.html.HTMLTextAreaFigure: void draw() 

9. org.jhotdraw.standard.CompositeFigure: void draw() 

10. org.jhotdraw.standard.StandardDrawingView: void drawDrawing() 

11. org.jhotdraw.standard.StandardDrawingView: void drawAll() 

12. org.jhotdraw.standard.SimpleUpdateStrategy: void draw() 

13. org.jhotdraw.standard.StandardDrawingView: void paintComponent() 

14. javax.swing.JComponent: void paint() 

15. org.jhotdraw.contrib.zoom.ZoomDrawingView: void paint() 

16. library method calls: java.swing,java.awt 

17. org.jhotdraw.contrib.MDIDesktopPane: … createContents() 

18. org.jhotdraw.contrib.MDIDesktopPane: void addToDesktop() 

19. org.jhotdraw.contrib.MDI_DrawApplication: void newWindow() 

20. org.jhotdraw.samples.javadraw.JavaDrawApp$4: void execute() 

21. org.jhotdraw.samples.javadraw.JavaDrawApp: void 

execute_aroundBody0() 

22. org.jhotdraw.samples.javadraw.JavaDrawApp: void 

execute_aroundBody1$advice() 

23. org.jhotdraw.samples.javadraw.JavaDrawApp: void 

executeCommandMenu() 

  Listing.19. Summarized exception path.  

 

5.6.     
Summary 

This chapter presented the supporting ideas and the implementation details 

of SAFE, a static analysis tool proposed in this work for discovering the exception 

flows in AspectJ programs. It is developed on top of the Soot framework (Vallée-

Rai, 2000) for the static analysis of Java bytecode. The SAFE tool implements an 

exception-flow analysis algorithm that traverses a program representation - based 

on the program call graph and exceptional control flow information – to discover: 

(i) every exception that may escape from methods or advices (i.e., exception 

interface), and (ii) the exception path of each exception.  

The exception interfaces and the exception paths are stored in XML files 

which are used, by specific modules of the SAFE tool, to mine information 

concerning the flow of exceptions in AspectJ programs. The Exception Path 

Miner is one of the SAFE tool components; this component parses the exception 

paths and classifies them according to the Signaler-Handler relationship. This 
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information is useful for discovering if the aspects are responsible for signaling 

the exceptions not adequately handled inside the system (e.g., uncaught 

exceptions). 

The following chapter presents the SAFE tool dynamics in the context of a 

proposed verification approach for checking the reliability of the exception 

handling code of AspectJ programs. The approach uses the SAFE tool to (i) 

calculate the exception paths of AspectJ programs, (ii) automatically discover 

exception handling error-prone scenarios (e.g., uncaught exceptions, exception 

subsumption), and (iii) guide the manual inspection of exception handling code.  
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